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It has been shown experimentally (Lee et al. 1982) that water drops with injected air 
bubbles inside them may be forced dynamically to assume the spherosymmetric 
shape. Linear analysis is unable to predict a centring mechanism, but provides two 
distinct modes of oscillation. Weakly nonlinear theory (Tsamopoulos & Brown 1987) 
indicates that centring of the bubble inside the drop occurs when the two interfaces 
move out of phase. A hybrid boundary element-finite element schemes is used here to 
study the complete effect of nonlinearity on the dynamics of the motion. The gas 
inside the liquid shell may be considered either incompressible or compressible by 
using a polytropic relation. In both cases, the present calculations show that besides 
the fast oscillation of the shell due to an initial disturbance, a slow oscillatory motion 
of the centres of the bubble and the drop is induced around the concentric 
configuration. This occurs in both modes of oscillation and is a direct result of 
Bernoulli's law. Furthermore, when this slow oscillation is damped by viscous forces, 
it is anticipated that it will lead to a spherosymmetric shape. 

1. Introduction 
In general, compound drops are composed of a fluid core enclosed by a shell made 

of a second fluid and are immersed in a fluid medium. Both pairs of fluids in contact 
are considered immiscible. Compound drops have received considerable attention in 
recent years owing to a variety of applications (Johnson & Sadhal 1985). The most 
notable application is in manufacturing hollow spherosymmetric shells of metal or 
glass used in Inertial Confinement Fusion (ICF) as targets (Lee et al. 1982; Kendall 
1986; Hendricks 1982). Their preparation involves dynamic centring of a bubble 
inside a liquid drop and subsequent solidification of the system. In another 
application, hollow shells are used as fillers to produce composite systems of high 
strength and low weight. The feasibility of the above applications is determined by 
the concentricity of the shells, which is required for a successful implosion-reaction 
in ICF and enhances the compactness of the composite material. 

Hollow liquid shells are produced by the capillary breakup of an annular liquid jet 
(Kendall 1986). There is experimental evidence to suggest that compound drops and 
liquid shells tend to become concentric and resist breakup while undergoing shape 
oscillations (Lee et al. 1982). Shape oscillations may easily be induced while the shells 
are levitated acoustically. In what follows, the volume inside the inner and outer 
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gas-fluid interfaces will be referred to as bubble and drop, respectively. The region 
between the two interfaces will be called the liquid shell. 

I n  an effort to  predict the aforementioned behaviour, it is assumed that the shell 
is initially axisymmetric in shape and that only axisymmetric disturbances are 
allowed. The effe:t of gravity may be neglected on the grounds that the gravitational 
Bond number (R:gp/a) is small. The liquid shell is assumed to be incompressible, 
whereas the gas bubble may be either incompressible or compressible. I n  both cases 
the pressure in the bubble is uniform, but in the latter case it is allowed to  vary with 
volume changes according to a polytropic law. 

Linear analysis in both the high and low Reynolds-number limits has been carried 
out by Saffren, Elleman & Rhim (1982) and Patzer & Homsy (1975), respectively. 
Both studies consider axisymmetric disturbances in the form of spherical harmonics 
of initially concentric configurations. Two modes of oscillation are identified for the 
shell. In  the first one (the so-called bubble mode) both interfaces are moving in phase, 
while in the second one (the so-called sloshing mode) they move out of phase. The 
motion is characterized by distinct linear frequencies and decay rates (for viscous 
fluids). Both studies predict a zero eigenvalue for the mode that represents a 
translation of the bubble with respect to the drop. 

The inability of either viscous or inviscid linear theory to  explain experimental 
observations indicates that nonlinear effects, most notably inertia, should be 
included in a successful prediction of the centring mechanism. Tsamopoulos & Brown 
(1987) carried out a weakly nonlinear analysis for the oscillations of an inviscid liquid 
shell. They predicted that the frequencies of shape oscillations decrease pro- 
portionately to e2 and that centring will occur in a slow timescale (0(ep2), where e is 
the amplitude of the motion) only when the sloshing mode is excited. More recently, 
Lee & Wang (1988) considered the limiting case of shell thickness small compared to 
either of the radii. Their inviscid analysis revealed a slow oscillation of the bubble 
around the centre of mass of the shell for both the bubble and the sloshing mode. 
Introduction of weak viscous effects in their model resulted in centring of the bubble 
inside the drop, which occurred faster for larger initial deformations. 

I n  the present study the exact inviscid and irrotational equations for a liquid shell 
are solved numerically. The inviscid assumption simplifies the treatment and is 
appropriate since Re 9 1 and both interfaces are between a gas and a liquid (Lamb 
1932). I n  fact, with water as the liquid in the shell at 20 "C the Reynolds number 
based on the outer shell radius, E2 ,= 1 em, is 866 ; whereas it decreases to  274 if it is 
based on the shell thickness, E2-R, = 0.1 em. I n  the first case, the boundary-layer 
thickness, which scales with Re-;, is much smaller than the characteristic lengthscale 
(0.03 cm Q 1 cm) ; whereas it becomes comparable to it in the second case (0.06 em 
< 0.1 em). The governing equations along with the relevant physical quantities are 
given in $2. It is a well-known result of potential theory that solutions to Laplace's 
equation can be found by solving a boundary-integral equation. I n  general, this 
equation gives the value of the potential anywhere in the domain in terms of 
boundary quantities (Kellogg 1953). In  moving-boundary problems like the one 
treated here, this integral equation must be solved along with the kinematic and 
dynamic boundary conditions for the location of the boundary, the potential and the 
potential flux there a t  all times. This integral approach has been used quite 
extensively in the literature since it reduces the dimensionality of the problem by one 
and, in some cases, can even exactly satisfy certain boundary conditions. 

Longuet-Higgins & Cokelet (1976) were among the first to use this approach in 
their study of progressive Stokes and breaking waves. They used a Lagrangian 
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formulation for advancing in time the free surface location and the velocity 
potential, whereas an integral equation of the first kind was solved for the normal 
component of the velocity at every time step. However, this scheme gave rise to a 
short-wave instability that was removed by introduction of artificial viscosity. Dold 
& Peregrine (1984) studied the same problem by using the Cauchy integral theorem 
for the complex velocity potential as well as its Eulerian time derivatives up to a 
certain order. This scheme allowed them to integrate in time without smoothing. In  
their study of forced oscillations of floating solid bodies, Dommermuth & Yue (1987) 
used Green’s theorem to solve for the normal velocity on the surface. In order to 
avoid concentration of the Lagrangian markers in regions of high curvature, which 
causes growth of numerical instabilities, they used remeshing at  every time step, 
which is a form of smoothing. 

The method of point vortices has been widely used ever since the work of 
Rosenhead (1931) in numerical studies of layered flows. Such motions are known to 
be subject to the Kelvin-Helmholtz and Rayleigh-Taylor instabilities. Baker, 
Meiron & Orszag (1982, 1984) developed a generalized point-vortex method for 
studying interfacial wave phenomena. They used point vortices or dipole dis- 
tributions that generate the velocity potential and are related to it through an 
integral equation of the second kind. This formulation makes possible an iterative 
solution with potential savings in both storage and computation time. However, 
growth of high modes still persists and is suppressed only after decreasing the time 
step and limiting the length of computations. Furthermore, Pullin ( 1982) introduced 
surface tension in his study of Rayleigh-Taylor and Kelvin-Helmholtz instabilities 
with the point-vortex method. He found that this only delayed the appearance of 
instabilities and that smoothing was eventually needed. Krasny (1986) used the same 
method coupled with a new filtering technique. Lundgren & Mansour (1988) were the 
first to use a dipole distribution for studying capillary oscillations and instabilities of 
liquid drops. They also observed an oscillatory growth of the higher modes brought 
about by the numerical discretization of the surface, which was more pronounced 
close to the poles. They used a standard smoothing technique in order to filter them 
out of the solution. 

The nature of these short-wave instabilities is not exactly known. However, Moore 
(1981) showed that the chaotic motion observed in all numerical simulations of the 
Kelvin-Helmholtz instability is a discrete equivalent of the ill-posedness of the 
continuous set of equations. Subsequently, Moore (1982) studied the evolution of 
Stokes waves using the point-vortex method and concluded that the sawtooth 
instability is a result of nonlinear interactions and mode resonance which is 
facilitated by the distortion of the dispersion relation in the discrete model. 

In view of the variety of approaches, choosing a particular numerical scheme is not 
an easy task. Our choice was dictated by the success of previous attempts, our own 
experience, and the nature of the problem at hand. To begin with, it is anticipated 
that the two free surfaces of the liquid shell will not fold over before they touch, at 
which point both the computational scheme and the physical forces present must be 
modified. This observation, coupled with the frequent reference in the literature 
(Lundgren & Mansour 1988; Dommermuth & Yue 1987; Moore 1981) to the need for 
redistributing the Lagrangian markers in order to avoid their time-dependent and 
uneven distribution and the resulting instability, make the use of an Eulerian 
formulation quite attractive. In this context, and in order to make the present 
formulation truly one-dimensional, the boundary conditions are rewritten in terms 
of quantities that are defined and can be calculated on the boundaries only. The 



544 N .  A .  Pelekasis, J .  A .  Tsamopoulos and G .  D .  Manolis 

necessary transformation in terms of the Hamiltonian variables is provided in $3  and 
its advantages are discussed. 

Choosing between an integral equation of the first or second kind is probably the 
most important decision that has to  be made when using an integral formulation. As 
pointed out by Baker et al. (1984) for axisymmetric problems and by Baker 6 Shelley 
(1986) for two-dimensional geometries, the double-layer formulation, when applied 
to  multiply-connected domains, leads to a Fredholm equation of the second kind 
whose homogeneous form admits non-trivial solutions. Consequently, an additional 
source term has to be included whose strength must be calculated using the adjoint 
equation as prescribed by Fredholm’s alternative. In  order to  avoid this additional 
effort and motivated by the reliability of results obtained previously (Dommermuth 
& Yue 1987 ; Pelekasis, Tsamopoulos & Manolis 1990), Green’s theorem was chosen 
for the integral formulation. This integral formulation is described in $4. 

I n  $5,  certain invariants of the motion are given. They will be used to  check the 
accuracy of the numerical results. In  $6, the numerical methodology is discussed. It 
involves a hybridization and simultaneous solution of the integral equation via 
boundary-element methods and the kinematic and dynamic conditions via finite- 
element methods. This combination brings together the flexibility of the now 
standardized finite-element methodology with the effectiveness of the integral- 
equation formalism. Use of this numerical approach permits time integration 
without smoothing even for moderate deformations, as long as the discretization in 
space is refined enough. Under severe deformations and as time progresses, 
computations have to be stopped owing to the growth of short waves. This behaviour 
will be analysed in $6 also. I n  $7,  the linear solution is given in terms of the 
eigenmodes and is compared with numerical results for small-amplitude defor- 
mations. I n  addition, the effects of the amplitude of the initial disturbance, of the 
ratio of the bubble to  drop radii and of the gas compressibility are presented. Finally, 
conclusions are drawn in $8. 

2. Eulerian formulation 
The oscillatory motions of an inviscid, incompressible and axisymmetric liquid 

shell are studied here. The shell is immersed in and is surrounded by an inertialess 
gas. The pressure of the outer gas P, is constant, whereas the pressure of the gas inside 
the bubble P, is uniform in space but can vary in time. The density of the liquid in the 
shell is p and the surface tension of either gas-liquid interface is cr. The motion of the 
shell is induced by initially introducing an axisymmetric deformation of both free 
surfaces as well as by translating the centre of the bubble with respect to  the centre 
of the drop along the line of symmetry. The radii of the motionless and 
spherosymmetric shell with the same volume are R, and R, for the bubble and the 
drop, respectively. The outer radius R, is assigned as the characteristic length of the 
system. It is used to  define the dimensionless shape functions F,(B, t )  and F2(8, t )  that 
represent the distance of the two interfaces from the centre of mass of the shell, which 
is also the origin of the coordinate system. A schematic of the shell is given in figure 
1, where 8 is the meridional angle in spherical coordinates. As in Tsamopoulos & 
Brown (1983, 1987), the velocity potential (uR,/p);@(r, 8, t ) ,  pressure (2u/R,) P(r ,  8, 
t )  and time (pRi/u)it are defined in terms of their dimensionless counterparts. Then 
the equations and boundary conditions governing the motion are 

V2@ = 0, F,(B, t )  G r G F,(e, t ) ,  0 4 8 G X ,  (2.1) 
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FIQURE 1.  Schematic of coordinate system and surface representation used for the description 
of a liquid shell. 

( 2 . 2 ~ )  

(2 .2b)  

(2 .3)  

(2 .4)  

(2 .5)  

( 2 . 6 ~ )  

(2 .6b)  

( 2 . 6 ~ )  

Laplace’s equation (2 .1)  governs the irrotational flow inside the shell, which remains 
axisymmetric due to (2 .2) .  In the absence of viscous effects, Bernoulli’s equation 
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describes the pressure variation inside the shell, (2.3). Equations (2.4) are the 
kinematic conditions that govern the time evolution of either interface. The dynamic 
boundary conditions, (2.5), describe the balance between the capillary force and the 
pressure drop across the interface. In these equations, Xi denote the mean 
curvatures, n, the outwards-pointing normals of either interface and V, is the surface 
gradient. For convenience, the inwards-pointing normal to the bubble that will be 
used later is defined as n; = -nl. The unit normals and mean curvatures can be 
expressed in terms of the shape functions of each interface as 

cot i3G [ 1 + &I] + 2 + 3 &I} kl [ 1 + @I]3’. (2.8) 
4 

Also, subscript i3 denotes partial differentiation with respect to that coordinate. 
When the bubble is considered to be incompressible, its volume remains constant 
according to (2.6u), where R = RJR,. This equation is used to calculate the pressure 
inside the bubble. Equation (2.6b) sets the volume of the drop as constant, thus 
assuring that the volume of the shell, 5-5, is conserved. This is done in order to 
exclude the zeroth mode from the numerical solution since it may grow exponentially 
(see Tsamopoulos & Brown 1987). For further discussion see $6. Alternatively, the 
pressure inside the gas bubble may be allowed to change, assuming that it undergoes 
an adiabatic or polytropic variation. Then, ( 2 . 6 ~ )  must be used instead of ( 2 . 6 ~ )  and 
(2.6b) and y may be taken to be between 1 and 1.4. 

As mentioned earlier, the shell is perturbed to an axisymmetric shape, but no 
initial velocity is imparted to it, i.e. 

(2.9 1 aFi/at(i3, t = 0) = 0, i = 1,2, 

so that the initial velocity is zero and the motion irrotational, and remains so in the 
absence of viscosity. Following earlier work (Tsamopoulos & Brown 1983,1987), this 
initial disturbance is selected such that the shape of the shell is given by the normal 
mode solution and is correct to O(e2) .  The perturbation to the outer surface is 

q o , t  = 0) = i + s [ ~ 4 ~ , ( i 3 ) + ~ , ( e ) l + ~ 2 ( - - ; - ~ ~ ) + 0 0 ( ~ 3 ) ,  (2.10u) 

where Pn(8) is the Legendre polynomial of the nth degree. The initial deformation of 
the inner surface is 

where B is a constant given by Tsamopoulos & Brown (1987). The first Legendre 
polynomial is responsible for the initial displacement of the centres of mass of the 
bubble and drop. Clearly, the centre of mass of the shell remains at zero, since no 
external force is applied on it. The second Legendre polynomial distorts the shape of 
the shell in one of the two normal modes, to a magnitude measured by E and in such 
a way that the two interfaces do not intersect initially. 

The disturbances described in (2.10) are such that the volumes of the drop and the 
bubble are conserved (up to second order in E )  and correspond to volumes of spheres 
of radii 1.0 and R, respectively. Similarly, the centre of mass of the shell is set to zero, 
again up to second order in E .  Almost all of the results to be presented later have been 
obtained with these initial conditions. In an effort to study the effect of an initial 
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displacement of the centre of mass of the bubble on the motion, we also used the 
following initial conditions : 

(2.1 1 a )  

(2.11 b)  

The above conditions conserve volume up to second order in E ,  but set the centre of 
mass of the drop to zero while displacing the centre of mass of the bubble away from 
zero by an amount that depends on the value of the independent parameter A .  As a 
result, the centre of mass of the shell is displaced from the origin of the coordinate 
system to a different location and remains there. 

As a third alternative for initial condition both interfaces are taken to be spherical 
and the centre of the inner one is displaced upwards by A from the centre of the outer 
one : 

F2(B,t = 0 )  = 1 + d ' 2 ( B ) - ~ 2 ,  

~ p , t  = 0) = R+dP,(e)+EP2(B)B-E2R[(B/R)2+%1. 

F2(0,t = 0 )  = 1 ,  

Fl(O, t = 0 )  = d cos B + (R2 - A 2  sin2 B)t. 
(2.12 a )  

(2.12b) 

No shape oscillations can arise from this originally static configuration unless there 
is a variation in the outer gas pressure. 

3. Formulation in terms of the canonical variables 
The goal is to end up with a representation of the motion in terms of surface 

quantities. In particular, the location of the boundary and the value of the potential 
there have been shown by Miles (1977) to be the canonical variables of the 
Hamiltonian for water wave problems. These two are naturally the most suitable 
variables for a description of the motion. To this end, two new variables are 
introduced as 

$, (@,t )  = @(r = I$(O,t),O,t), i = 1,2.  (3.1) 

They are the values of the potential at  each interface and obey the same initial and 
symmetry conditions imposed on @ earlier. In what follows, the governing equations 
will be restated in terms of $,, 4 and a@/an,. The chain rule is applied first in order 
to evaluate the derivatives of @, as 

Using the definition of the gradient operator and the normal unit vectors to either 
interface, the derivative a@/& I t ,  8, r-Ft is expressed in terms of normal and meridional 
derivatives of the potential as 

Substituting (3.2) and (3.4) into the kinematic condition results in 
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The same result can be obtained by combining (2.4) written for f(0, t )  = r-F(B, t )  = 
0 with the definition of n = V f / l V f l ,  and with a $ / a n = n - V @ .  However, the 
derivation above is preferred because it can be used for both the kinematic and the 
dynamic condition. Combining (3.2)-(3.4) with Bernoulli’s equation and the normal 
force balances a t  each interface results in 

at 

a$ F. a$. 
-an, F; ae + - * ~ ( F ~ + F ~ , o ) - ~  = 0, i = 1 ,2 .  (3 .6)  

The final relationship between the normal derivatives of the potential and its values 
a t  the two interfaces will be provided by the Laplacian (equation (2.1)). This can be 
written schematically as follows : 

and is dealt with in $ 4 .  
Thus, (2.1)-(2.5) have been substituted by (3.5)-(3.7).  The fact that  F and @ are 

the canonical variables of the Hamiltonian was also shown earlier by Zakharov 
(1968). Both he & Miles (1977) used a spectral representation of F and $ in order to 
study stability of periodic water waves. The above formulation has an important 
advantage when carrying out numerical calculations. The radial coordinate, r ,  has 
been eliminated and the partial derivatives are taken with constant 0 or t ,  as opposed 
to the original formulation where r had to be kept constant as well. Clearly, if all 
relationships are to be written on the interfaces, r is bound to change both with time 
and with the meridional angle. This makes the numerical differentiation holding r 
constant rather ambiguous. In  contrast, the current formulation makes the one- 
dimensional character of the problem apparent and the numerical implementation 
straightforward. 

4. Integral formulation 

on the two interfaces, Green’s third identity is applied as follows: 
In order to obtain a relationship between the potential and its normal derivative 

1 

(4.1) 
ad 

o~@(x’, t )  + @(x, t ) - (x ,  x’) U(X,  t )  = (x, t )  G(x, x’) U(X,  t ) ,  
/ A  an 

where A comprises both shell interfaces and n is the outwards-pointing normal for the 
domain of the shell, i.e. it is either n,  or n;. Furthermore, d is the three-dimensional 
free-space singular solution of the Laplacian subject to a point force a t  the source 
point x ( r ,  8, $) and a&/& is its normal derivative. In spherical coordinates, d ( x ,  x’) 
is given by 

d ( x ,  x’) = - [ ( r  sin 8 cos $ - r’ sin 8‘ cos $ ’ ) 2  + ( r  sin 8 sin $ - r’ sin 8’ sin $’)2 
1 

4rc 

+ (T cos e - r f  cos ~‘)2]-t. (4 .2)  

If the field point, x’(r ’ ,  0’’ $’), is in the exterior (interior) of the shell, the jump-term 
coefficient a is equal to 0 (1). If it lies on one of the two surfaces, it will coincide with 
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one of the source points x(r, 8, q5) and then a is given by the angle subtended by the 
planes tangent to the surface at that point. For a smooth surface, a is equal to 0.5. 
In  the latter case, the integral on the left-hand side of (4.1) is to be understood in the 
Cauchy principal value sense. In order to extract the singularity from the integral, 
the value of the potential at the field point is added and subtracted : 

a6 
i@(X', t )  + [@(x, t )  - @(x', t ) ]  - (x, x') dA(x, t )  I an 

I:: a6 
(x, x') dA(x, t )  = -(x, t )  6(x, Xl) dA(x, t ) .  (4.3) 

In  this form, the integrand in the first integral on the left-hand side of (4.3) is regular 
since @(x, t )  - @(x', t )  tends to be zero as the field point approaches the source point 
at the same rate with which ad/& becomes singular in this neighbourhood. In  the 
second integral, @(x', t )  is constant as far as the integration in x(r ,  8,q5) is concerned 
and can be taken outside the integral sign, thus leaving a well-known Cauchy 
principal value integral : 

@(XI, t )  1 (x, x') dA(x, t )  = -i@(x, t ) .  (4.4) 
A an 

Inserting this expression in (4.3) yields 

I, E I A , @ ( x , t ) - @ ( x ~ , t ) , - ( x , x ' ) h 4 ( x , t )  a6 = -(x,t)6(x,x/)dA(x,t). (4.5) 
an 

For axisymmetric problems q5' can be set equal to zero in 6 and ad/&. Then, the 
integrations indicated in (4.5) can be carried out with respect to q5, resulting in 

when the field point is taken to the inner surface. When the field point is taken to the 
outer surface, the resulting expression is similar to (4.6) except that the subscript 1 
must be substituted by 2. 

In addition, 

These last two integrals can be written in terms of elliptic integrals of the first and 
second kind as will be explained in $6. Equation (4.6) constitutes a Fredholm 
integral equation of the first kind when solved for the flux on the boundaries. 
However, in the present scheme all unknowns are calculated simultaneously (for 
reasons presented in $6) and this does not allow for this classification of the integral 
equation as first or second kind. 

5. Invariants of the motion 
A very important test on the accuracy of the numerical results consists of 
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monitoring the values of certain quantities that are known to be invariant in time. 
Such a quantity is the total mass outflux across each one of the interfaces: 

la have to be zero for an incompressible bubble. Equations (5.1) can be obtained by 
combining the volume conservation equations for the drop and bubble with the 
kinematic boundary conditions. If the bubble is considered to be compressible, then 
the mass flux across each individual surface may vary but the difference 12-11 has 
to be zero since it represents the total mass outflux across the shell surfaces. This fact 
can be shown by applying Gauss’ theorem on the Laplacian. Another way of assuring 
overall mass conservation of the shell is by requiring its volume to remain constant : 

l(F:-F!)sinOdO = 2(l--R3). (5.2) 

This expression can also be derived by integrating the equation of continuity over 
the volume of the shell and applying the kinematic boundary conditions. 

In the absence of any external forces, the centre of mass of the shell has to remain 
stationary, since no initial velocity was imparted to it at  t = 0. This is stated as 
follows : 

Equation (5.3) defines the component of the displacement, Z,,, of the centre of mass 
of the shell along the axis of symmetry. The other two components are identically 
zero owing to the axial symmetry in the present problem. Clearly, the centre of mass 
of either the bubble or the drop may vary in time. Their respective expressions are 

(5.4) 

An alternative analytical way to arrive at  (5.3) and (5.4) is to combine the volume 
integrals of Euler’s equation of motion and of the product of Laplace’s equation with 
the z- coordina te . 

Since viscosity is assumed to be negligible, the motion of the liquid shell is 
conservative and its total energy E (kinetic and surface) is invariant. Thus: 

Applying Gauss’ theorem on the volume integral and splitting 
into each surface results in 

(5.5) 

the surface integrals 

2 

E = nC F,(F~+P&$sinOdB. (5.6) 
I-1 

The invariance of (5.6) can also be shown by using 

S E V d j d V  = 0, (5.7 1 
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and then proceeding with integration by parts and employing the kinematic and 
dynamic boundary conditions. 

When the bubble is considered to be compressible, the total energy of the shell is 
still conserved. However, besides the kinetic and surface energies one has to include 
the energy that is exchanged with the surrounding gas medium due to volume 
variations, i.e. 

In the above, V, and V, denote the instantaneous volume of the bubble and the drop, 
respectively. 

6. Numerical inplementation 
In its final form, the problem consists of (2 .2) ,  (2.9)-(2.12), (3 .5) ,  (3 .6) ,  and (4 .6) .  

In addition, (2 .6a)  and (2.6b) are used when the bubble is incompressible, whereas 
(2.6 c )  is used when compressibility effects are taken into consideration. Equation 
(2.6b) is not linearly independent and is used instead of one of the discretized 
equations corresponding to the kinematic boundary condition on the outer interface. 
The unknowns of the problem are the location of the boundary, the potential and the 
flux on each of the interfaces along with the pressure inside the bubble. These are 
calculated by the kinematic and dynamic boundary conditions, the Laplacian and 
the conservation equation of the bubble volume, respectively. The ratio of the radii, 
R, the initial displacement of the centres of mass and the amplitude of the initial 
disturbance are the problem parameters. When compressibility effects are considered 
a pressure datum is also needed. 

In order to ensure linear stability of the numerical scheme and high accuracy, the 
time-implicit trapezoidal rule was chosen. An additional advantage of an implicit 
scheme over an explicit one is in updating the pressure. For a compressible bubble 
this is achieved through the polytropic or adiabatic relation. When the bubble is 
incompressible, however, the volume conservation equation does not involve the 
internal pressure. This makes the task of updating the pressure or the surface 
potential rather ambiguous. On the other hand, use of an implicit scheme allows for 
solution of all the unknowns simultaneously. As a result, the unknown pressure may 
be associated with the volume conservation equation even though it does not appear 
explicitly in it. 

The trapezoidal rule is second-order accurate and requires iterative solution of a 
nonlinear set of equations and simultaneous inversion of the total problem matrix. 
The initial guess at every time step for the iterative solution of the coupled 
oscillations is provided by the second-order Adams-Bashforth predictor. Also, 
equidistant time steps are used. The efficiency of the trapezoidal rule compared with 
that of an explicit scheme is eventually decided by the interplay of numerical 
stability and accuracy. The fourth-order Runge-Kutta algorithm was also used for 
the case of a compressible bubble and with the same time step and spatial 
discretization as that used for the trapezoidal rule. It was found that the 
Runge-Kutta algorithm was roughly 1.5 times faster, as well as more accurate since 
it is a higher-order scheme. For reasons of consistency, however, it was decided to use 
the trapezoidal rule throughout the present study. 

As previously shown, the problem has been successfully reduced to one spatial 
dimension, namely the meridional angle 8. An equidistant mesh in 0 is employed 
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since formation of regions of excessively high curvature is not anticipated. Moreover, 
an equidistant spatial discretization has been shown to smooth out short-wave 
instabilities (Dommermuth & Yue 1987; Moore 1981; Lungren & Mansour 1988). 
Equations (3.5) and (3.6) are discretized using the finite-element procedure. The 
product of the basis functions times sine is used as the weighting function. 
Integration by parts eliminates second-order derivatives from the mean curvature 
term. The boundary conditions (2 .2)  are applied in order to evaluate the terms 
integrated out from the weak finite-element formulation. 

Cubic B-splines (de Boor 1978), which are actually cubic polynomials, are used as 
basis functions in representing 4, ki, a@/an,, i = 1,2. For example, 

(6.1 b) 

( 6 . 1 ~ )  

where B, are the B-splines, a,, b,, d, are the unknown coefficients for the inner surface, 
potential and flux respectively and N is the number of nodal points in 0 4 8 < n. The 
B-splines were preferred because they guarantee continuity of the function and its 
first and second derivatives which (hopefully) minimizes the possibility of short-wave 
instability. Furthermore, the B-splines interpolate a smooth function and its first 
derivative to O(h4) and O(h3) respectively, where h is the maximum element length. 
Four Gauss points are used for the evaluation of integrals over an element. This 
ensures that the numerical error is controlled by the interpolation of the derivative 
of the unknown function. Further details on the implementation of B-splines are 
given in Pelekasis et al. (1990). In this fashion, the kinematic and dynamic boundary 
conditions may be written schematically as 

where M is the common mass matrix and F,, F, are the forcing vectors, respectively. 
The time integration scheme may now be readily applied. The volume conservation 
equations and the polytropic relation are already in integral form and need not be 
discussed further. 

Discretization of the integral equation (4.6) is done in a fashion similar to that of 
the boundary conditions. The domain is represented by boundary elements and a 
system of 2N equations is obtained by allowing the field point to coincide with each 
of the nodes. The two kernels appearing in this equation are given by 

4cosBsinedK sin(@+#) _- aG n, F 2 - F 2  - = {-[- E(m)-K(m) + n , F  
an 2F a-b ] [ a+b dm a-b 

(6 .4)  

where a = F2+F’2-2FF’ cosecose, (6 .5)  
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(6.6) 

m = 2b/ (a+b) ,  (6.7) 

and (r’, 0’) is the field point, ( T ,  0 )  is the source point, and (nr, no) are the radial and 
meridional components of the outward-pointing unit normal at  the source point. 
Finally, K(m) and E(m)  are elliptic integrals of the first and second kind, respectively, 
given by Abramowitz & Stegun (1972). When the field point does not fall on the 
element where integrations are being carried out, the integrands in (4.6) are regular. 
Normal Gaussian quadrature is used with a variable number of Gauss points that 
depends on the distance between the field and the source points (Lachat & Watson 
1976). When the field point coincides with one of the source points the G kernel 
becomes logarithmically singular, while the aG/an kernel has an Ix’ - XI-’ singularity. 
However, as it was pointed out in $4, the I x ’ - x [ - ~  singularity is being cancelled out 
by the term [@(O,t)-@(#,t)], thus making the integrand regular and allowing for 
Gaussian quadrature. The integral involving the G kernel has to be treated by means 
of a special 12-point logarithmic quadrature. For a more detailed discussion on these 
aspects the reader is referred to Pelekasis et al. (1990). 

Having carried out the spatial and time integration, a set of 6N+1 nonlinear 
algebraic equations are obtained, which are schematically written as 

R(Y)  = 0, (6.8) 

where Yr = (a:, a:, b:, b:, 4, @,I-‘,). This set is solved by Newton’s method, which 
starts with an initial guess YO and then calculates successive approximations to the 
solution as 

Fr+l) = F”-J-’R( Fk’) ,  k = 0 ,1 , .  . . . (6.9) 

The Jacobian matrix J = aR/aY is analytically calculated and its part that arises 
from the integral equation is fully populated. A standard IMSL routine (DLFTRG) 
is used for its factorization. Typically, three to four Newton Iterations are sufficient 
to reduce the error, defined in terms of the Euclidean norm, I Pk+l) - Fk)12, to less 
than 

Since the calculation of the elements of the Jacobian matrix corresponding to the 
Laplacian involves differentiation of the already singular kernels (G and aG/an), one 
might expect that this will give rise to even stronger singularities. However, as 
explained in Pelekasis et aE. (1990), this is not true since at  the singular point G and 
aG/an will depend on the coefficient both through F and F’. Furthermore, it may 
be readily shown that a t  the singular point the strongly singular part of aG/aF is 
cancelled out by the equivalent singular part of aG/aF.  Similarly, the most singular 
part of a2G/anaF is counteracted by the most singular part of a2G/anaF in such a 
way that they eliminate each other at  the singular point. As a result of this, the 
Jacobian elements will be at  most as singular as the residual terms from which they 
stemmed and consequently can be integrated as shown before. 

The numerical scheme described thus far can be used for tracing the motion of the 
shell, provided that the two interfaces do not touch or fold over. In these cases, their 
description would not be a single-valued function of the meridional angle. Another 
important characteristic of the motion of a shell surrounding an incompressible 
bubble is that the zeroth mode is observed to grow exponentially fast for any value 
of R. The same situation occurs in the compressible case for a certain range of values 
of the internal pressure depending on R. Since the zeroth mode corresponds to a 
uniform inflation of a bubble, imposing the volume conservation for the in- 
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compressible case and solving for thf: Laplacian should in principle guarantee 
conservation of volume for both bubble and drop. However, the discrete equations 
will contain the zeroth mode due to a small round-off error. This mode will grow as 
predicted by the linear theory and eventually become the dominant one. In order to 
rule it out, the volume conservation is explicitly imposed on the drop also. Since this 
is not a linearly independent equation, it enters the formulation in place of one of the 
discrete equations corresponding to the kinematic boundary condition on the outer 
surface. 

The accuracy of the method was first tested on the linear problem for which an 
analytical solution exists (Tsamopoulos & Brown 1987). Upon mesh refinement, the 
numerical scheme exhibits O(Atz)  and O(h3) convergence. This is expected since the 
trapezoidal rule is second-order accurate and the most important error in the spatial 
discretization is in interpolating derivatives of the boundary shapes. No variation of 
the linear energy is observed, and the boundary shapes are always calculated more 
accurately than either the potential or the flux. 

The most commonly observed numerical difficulty in free-surface flows is the 
growth of short-wavelength modes with time. As argued by several investigators 
(Moore 1982 ; Lundgren & Mansour 1988) this is a nonlinear instability since it grows 
faster for larger values of the initial deformation. One has to be careful in recognizing 
this, since high modes are naturally expected to grow, albeit slowly in time, due to 
nonlinear coupling. Therefore, as time increases they are expected to become more 
important. In addition to this physical growth, the numerical instability is 
channelling energy to the higher modes from the lower ones, thus accelerating their 
growth. This probably occurs through resonance between the initially excited modes 
and the higher ones, due to inaccuracies in the numerical dispersion relation (Moore 
1982). 

In the present formulation, detection and suppression of this numerical error is 
achieved by refinement of the discretization in both space and time, but without 
resorting to numerical smoothing. Short-wave instabilities are more apparent when 
the bubble mode is initially excited. The reason for this is that for the same values 
of E and R, the relative deformation of the two surfaces is larger in the bubble mode 
than in the sloshing mode, as shown in figure 4 of Tsamopoulos & Brown (1987) and 
in Lee & Wang (1988). Under the same conditions, the two surfaces touch each other 
faster in the sloshing mode since they move out of phase and this occurs before 
numerical instabilities have a chance to grow significantly. Touching of the two 
surfaces may be completely avoided for oscillation in the bubble mode and for the 
same values of E: and R. 

In an effort to investigate the behaviour of the numerical code with respect to the 
growth of high modes, the bubble mode was excited with R = 0.7. Forty boundary 
elements per surface were used. The time step was set at At = 0.002, which resulted 
in roughly 440 steps for one period of this mode as predicted by linear theory. Three 
different values of the initial disturbance were used, i.e. 0.05, 0.10 and 0.15. For E = 
0.15 the computations broke down at  t = 2.268 in the sense that Newton’s iterations 
failed to converge. It was found that the energy increased just before this failure. 

The growth of the higher modes is most clearly seen by plotting the flux through 
the inner surface, which deteriorates more and earlier than the interface shape and 
potential do. Figure 2 (c) shows the significant increase of the P40 mode for E = 0.15. 
In contrast to this, when E = 0.05 or 0.1, integration is carried out for as long as 10 
periods of oscillation, as shown in figures 2 (a )  and 2 ( b ) .  There is a noticeable increase 
of the high modes in the flux for E = 0.1, but this does not affect the calculations 
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FIGURE 2. Amplitude of 40th mode of the flux through the inner surface for (a) E = 0.05 and 40 
elements per surface; (b )  E = 0.1 and 40 elements; (G)  E = 0.15 and 40 elements and (d) E = 0.15 and 
60 elements per surface. 

significantly. The shape of the shells and the fluxes through each surface for E = 0.05, 
0.1 and 0.15 are shown in figures 3(a) ,  4 (a) ,  3(b) ,  4(b); and 3 ( c ) ,  4(c), respectively, 
just before the computations collapse for the 8 = 0.15 case. A gradual loss of 
smoothness is observed. 

In order to verify that numerical discretization is responsible for this failure, the 
calculations were repeated using 60 elements per surface for 8 = 0.15. Integration 
failed again, but at  a later time, i.e. at  t = 3.066. When the time step was halved, 
calculations were carried out further, until t = 3.688. At  that point, the two surfaces 
seem to touch each other at  the north pole. As can be seen in figure 2(d) ,  the 
oscillations of P4,, are considerably suppressed when 60 elements are used. Similarly, 
the energy is not observed to vary as much. At  the same time, the P,, mode is 
increasing rapidly before the two surfaces touch, as seen in figure 5. It is quite 
important to notice that in spite of these observations for the fluxes, the interface 
shapes are quite smooth, as seen in figures 3 (c) and 3 (d). More importantly, however, 
agreement up to the second significant digit is observed between the shapes shown 
in figures 3(c) and 3(d)  which were obtained with 40 and 60 elements, respectively, 
and for E = 0.15. This indicates that 40 elements are sufficient in order to obtain a 
numerically accurate solution for the shape, even under these adverse conditions. 
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FIGURE 3. Shapes of an oscillating shell at t = 2.2 for (a) E = 0.05 and 40 elements per surface; (a) 
E = 0.1 and 40 elements; (c) E = 0.15 and 40 elements and ( d )  E = 0.15 and 60 elements per surface. 
In case (c) computations collapse a little after this time. 

It is concluded that for large deformations and long integration times, high modes 
will inevitably appear. This simply means that the discretization required to capture 
the details of the solution makes the cost of very long computations prohibitive. In  
addition, these modes are going to  be more strongly damped out by viscosity, which 
makes any further expenditure towards resolving them rather unnecessary. 

Throughout the calculations i t  was made certain that the boundary shapes were 
accurate up to  and including the second significant digit. Global accuracy was 
guaranteed by monitoring the invariants of the motion. For example, the total 
outflux was never larger than and the total energy and the location of the centre 
of mass remained constant up to the fifth and fourth significant digits, respectively. 

In  the remaining part of this paper i t  should be understood, unless otherwise 
specified, that  40 elements are used for each of the interfaces. A time step At = 0.002 
and 0.01 is used for the bubble mode and the sloshing mode, respectively, which 
results in 440 and 280 time steps per period of the second Legendre mode. For this 
discretization, 9.0 and 5.5 CPU hours are needed per period on an IBM 3084 for the 
bubble mode and sloshing mode, respectively. On the average, the CPU time 
decreased by a factor of three, when the IBM 3090 a t  Cornell University was used. 
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FIGURE 5. Amplitude of 60th mode of the flux through the inner surface for E = 0.15 and 60 
elements per surface. 
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About 90% of the CPU time is consumed in setting up the system matrix and the 
remaining 10% to  factorize it. By doubling the number of nodal points, the 
computation time is approximately tripled. This dependence is much weaker than 
the O(N3)  increase that would have been observed if matrix inversion were the most 
time consuming part of the code. Moreover, construction of the system matrix 
requires a less than O(N2)  increase in arithmetic operations owing to the concentrated 
numerical effort in elements surrounding the singular point. I n  all cases, the present 
formulation proceeded without resorting to out-of-core solvers. 

7. Numerical results and discussion 
7.1.  Linear oscillations 

Infinitesimal and moderate-amplitude oscillations of fluid shells were analysed by 
Saffren et al. (1982) and Tsamopoulos & Brown (1987), respectively, when the bubble 
is considered to  be incompressible. The eigenvectors for any mode are given as 
equation (28) in the latter publication ; whereas the linear dispersion relation for the 
eigenfrequency is repeated here for completeness : 

w i  = (n-  l ) ( n + 2 )  [ (n+ 1)(1+R2n+4)+n(R3+R2n+1)+(S,)~]/[2R3(1--R2n+1 )I, 
( 7 . 1 ~ )  

where 
S, = (n + 1)2R4n+8 - 2n(n + 1) R4n+s + n2B4n+2 + 2n(n + 1 )  B2"+' 

+ 2(6n2 + 6n + 1 )  R2n+4 +2n(n+ 1) R2%+' +n2Rs- 2n(n+ 1 )  R3+ (n+ 1 ) 2 .  (7.1 b )  

Compressibility will modify only the zeroth mode. It can be shown that the 
dispersion relation for this mode is 

o : , ~  = (6PlyR-2-2R4)/(R3-R4).  ( 7 . 1 ~ )  

Numerical solution of the linear problem is particularly simple, since the discrete 
equations are also linear and can be solved by a single matrix inversion. Furthermore, 
if a constant time step is used, the system matrix to be inverted is unchanged. Thus, 
one matrix inversion is needed and is followed up by multiplication with a vector a t  
every time step, resulting in minimal CPU time and storage. 

Linear oscillations of a shell with R = 0.7 were computed using 40 elements for 
each surface and a time step of At = T,/400, where T,  = 27c/w2 = 0.858359 is the 
linear period of the second bubble mode. Integration was carried out for 10 periods. 
The results a t  the end of the computations are accurate up to  the fourth, third and 
second significant digit for the shape, potential, and flux, respectively. There is a 
slight deterioration of the accuracy of the results with increasing time, probably due 
to interaction of the two major modes with higher ones which are present in the form 
of round-off error. The evolution of the second Legendre coefficient of the shape of 
the inner and outer interface is shown in figure 6. By counting the maxima of the 
oscillations, the period may be recovered up to three significant digits, thus 
confirming the accuracy of the results. The total energy is conserved up to the sixth 
digit. The period of oscillation of the kinetic and dynamic energy is exactly half that 
of the second Legendre mode, as expected (Tsamopoulos & Brown 1983). Selected 
shapes and the energy evolution are given in Pelekasis (1991). 

7 . 2 .  Bubble mode 

As mentioned earlier, the primary motivation for this study is to identify and explain 
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FIGURE 6. Linear amplitude of 2nd mode of the shape of the (a) inner and (a) outer interfaces. 

the centring mechanism observed experimentally. The bubble is taken to be 
incompressible at first. In order to establish the connection with the earlier 
asymptotic analysis, the motion is initiated according to (2.9)-(2.10). Of course, this 
will only be correct up to 0(s2), but even for the nonlinear formulation the mode of 
oscillation that exists initially prevails for quite some time. 

Figure 7 shows the evolution of the two free surfaces in the bubble mode for about 
14 periods of P2. The initial disturbance is E = 0.1 and R = 0.7. A gradual increase of 
higher modes can be observed. This effect is even more pronounced in the flux. 
Moreover, as time integration proceeds, the two surfaces do not move completely in 
phase, but rather oscillate in a combined mode which consists of both bubble and 
sloshing modes. The evolution of the kinetic, surface and total energy is presented in 
figure 8. The total energy is conserved, whereas the kinetic and surface energy 
oscillate with half the period of the P2 oscillations. Towards the end of the 
computation, variations in kinetic and dynamic energies become less regular owing 
to the presence of higher modes. 

Figure 9 (a)  presents the location of the centre of mass of the drop and bubble along 
the axis of symmetry. The centre of mass of the shell remains constant (it is an 
invariant of the motion), but is slightly displaced from zero owing to O ( g 3 )  error in 
the initial disturbance. The two other centres oscillate in-phase around the centre of 
mass of the shell, in what is to be called from now on ‘the slow oscillation ’ as opposed 
to the ‘fast oscillation’ of the P2 mode. 

This is a result of the nonlinear interplay between pressure and surface-tension 
forces. Surface tension tries to make each interface independently spherical. A 
displacement of the bubble towards the north pole of the drop, for example, forces 
fluid to move away from the upper portion of the shell. The small shell thickness 
induces higher velocities at  the top as compared to those in the bottom, and, 
consequently smaller pressures according to Bernoulli’s law. In  the next phase of the 
motion, the higher pressure in the bottom forces the fluid to move upwards and thus 
the bubble is forced to move downwards. Simultaneously, the pressure in the bubble 
is uniform, although it may vary in time, whereas the pressure in the liquid varies 
as stated above. Therefore, the pressure drop across the interface of the bubble varies 
and must be counterbalanced by variations in the surface curvature. This last effect 
makes the bubble and the drop surface become less smooth. There is no indication 
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0 5 10 15 

FIGURE 8. Surface, kinetic and total energy for a shell oscillating in the bubble mode with E = 0.1 
and R = 0.7. The surface energy has been translated in such a way as to make the total energy zero. 
Positive values correspond to kinetic energy and negative ones to surface energy. 
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that the shell will become permanently concentric in the absence of viscosity. In fact, 
the amplitude of the slow oscillation seems to increase in time. This is probably due 
to transfer of energy to the first mode from higher ones. 

Even though the motion is not strictly periodic, a period of the fast oscillation of 
Pz and the other shape modes may be estimated by counting the peaks in their 
oscillations. For better accuracy, the shape of the outer surface is decomposed into 
LegendreFourier modes. The numerical error is smaller in the outer surface, since 
the initial deformation is not as severe owing to its larger radius. In the same way, 
the period of the slow oscillation is calculated. Clearly, it corresponds to the induced 
variation of the first Legendre mode of each surface. For E = 0.1, R = 0.7 and 
considering the first two peaks, it  is found that the period of the fast oscillation is 
T, = T, = 0.886 and that of the slow oscillation is T, = 5.472. As time increases, the 
periods change owing to the presence of other modes. More specifically, the slow 
oscillation period increases to 6.8 after the third peak. Integration is halted at  that 
point owing to deterioration of the accuracy of the solution. 

The effect of the ratio of the two radii is studied next. R is a measure of the thickness 
of the shell and values of 0.7, 0.8 and 0.9 are used. The amplitude was kept a t  8 = 
0.1. The period of Pz is very close to the one predicted by linear theory, whereas the 
period of the slow oscillation increases with increasing R. Shapes of shells are given 
in Pelekasis (1991). Figures 9(b) and 9 c )  show the slow oscillation for R = 0.8 and 0.9, 
respectively. The period of the slow oscillation cannot be easily identified, because 
more than one peak exists, especially for R = 0.8 and 0.9. When R = 0.9, the slow 
oscillation is decelerated to the extent that after integrating for about 12 periods of 
the fast mode, the two centres of mass still have negative deviations from the centre 
of the shell. Further integration in time is impossible owing to loss of accuracy. The 
motion of the centres shown in figure 9(c) resembles the prediction of Tsamopoulos 

, 
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FIGURE 9. Bubble mode oscillations of the centres of mass of the bubble (-), the drop (---) and 
the shell ( .  . . .) for (a) 6 = 0.1, and R = 0.7, ( b )  6 = 0.1 and R = 0.8 and (c) 6 = 0.1 and R = 0.9. 

& Brown (1987) for the first three periods of the fast mode (see their figure 6), namely, 
the period is that of the Pz mode and the amplitude is nearly constant in time. As 
time increases further, higher nonlinear effects enter the picture and induce a 
movement of the bubble centre towards the concentric configuration. The reason for 
this close correspondence between the present numerical results and the weakly 
nonlinear theory is the increase of R for the same 6. This leads to bubble shapes that 
are closer to spherical. Similarly, the deceleration of the slow oscillation with 
increasing R can be explained. The weaker initial deformation results in a smaller 
surface tension and pressure variation in the shell, which are the major restoring 
mechanisms. Thus, the time needed for the surface tension force to become 
significant is longer and the period of the slow oscillation larger. On the other hand, 
if the ratio of the radii gets very small, the dynamics of the two interfaces will become 
decoupled and the centring mechanism will be delayed also. Therefore, there must be 
an optimum value of R for which the period of the slow oscillation attains a 
minimum. Landman (1985) reached similar conclusions in studying viscous 
compound drops. 

Next, the effect of increasing amplitude on the period of oscillation was determined 
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FIGURE 10. Frequency variation of (a) the fast oscillation and ( b )  the slow oscillation, with 
increasing amplitude of the initial distortion mode P2(B), in the bubble mode of oscillation. The dots 
correspond to numerical results. 

Initial Frequency of fast Frequency of slow 
disturbance, E oscillation w2, oscillation us, 

0 7.323 0 
0.05 7.222 0.616 
0.10 7.092 1.149 
0.15 6.698 1.698 

TABLE 1 .  Effect of amplitude of disturbance on oscillation frequencies in the bubble mode 

by repeating the computations with E = 0.05 and 0.15. Numerical discretization and 
R are kept the same, and the results are given in figure 10 and table 1. Selected shapes 
are given in Pelekasis (1991). Results obtained for the fast oscillation are in 
agreement with those obtained by Tsamopoulos & Brown (1987). Specifically, an 
approximately quadratic decrease of the frequency of the second bubble mode with 
increasing E is observed : 

o ~ , ~  = 7 .323-23 .1~~ .  ( 7 . 2 ~ )  

This is expected, since the increased inertia in the nonlinear model decelerates the 
motion. The value obtained for E = 0.15 does not quite follow the c2 rule, but, as 
pointed out earlier, larger values of E result in a faster increase of the high modes, and 
dispersion of energy to them. 

The frequency of the induced slow oscillation is approximately proportional to E ,  

which indicates a strongly nonlinear effect : 

us, = 11.49~. (7.2b) 

This is due to the fact that, for larger E ,  more energy is allowed to transfer to the first 
Legendre mode, resulting in acceleration of the slow oscillation. In  addition, this 
result is in agreement with the findings of Lee & Wang (1988) for thin shells. 
Tsamopoulos & Brown (1987) do not predict such a behaviour for the bubble mode. 
They carried out a weakly nonlinear analysis up to third order and they found that 
the oscillation of both the bubble and drop centres will be of constant amplitude. In 
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addition, they predicted that the centres will never become identical to the shell 
centre. A possible explanation for this difference is that the numerically calculated 
results are correct to all orders of 6, and indicate a very long period for the slow 
oscillation which cannot be predicted analytically unless additional slower timescales 
are introduced in the multiple-scales expansion. 

7.3. Sloshing mode 

A similar investigation is carried out for the sloshing mode. Figure 11 presents the 
evolution of shapes over seven periods of P2. The initial disturbance and R are 0.15 
and 0.7, respectively. It is observed that the P2 mode primarily determines the shape 
of the shell throughout the motion. In figure 12 the surface, kinetic and total energy 
are shown. They do not exhibit any significant departure from those of a steady 
oscillation. 

The motion of the centres of mass is plotted in figure 13, exhibiting a slow 
oscillation around the centre of mass of the shel:, which they reach simultaneously. 
This is another indication of the high accuracy of the present calculations. The slow 
period is about 8.6 and the centre of mass of the shell remains stationary and close 
to zero. This is a picture very similar to the one obtained for the bubble mode. Again, 
there is no indication of achieving the concentric configuration permanently in the 
absence of viscosity. Figure 14 presents the evolution of some of the LegendreFourier 
modes of the shape of the outer surface. The second mode is the dominant one. 

A good estimate of the nonlinear frequencies of the different modes is obtained by 
enumerating the peaks in the oscillations. This was performed for E = 0.1, 0.12,0.15 
and 0.2. Shapes of shells are given in Pelekasis (1991). When 6 = 0.2, integration 
cannot proceed beyond half a period of P2 because the two surfaces touch each other. 
This does not allow the study of short-wavelength instability in the sloshing mode 
of oscillation. The same behaviour has been reported by Lee & Wang (1988). Using 
data from the other three cases, figure 15 and table 2 were prepared. It is observed 
that the period (frequency) of the second mode increases (decreases) quadratically 
with E as predicted by Tsamopoulos & Brown (1987) : 

w ~ , ~  = 2 .285-5 .56~~ .  (7.3a) 

The period of the induced slow oscillation is again inversely proportional to 6, which 
is in agreement with the results of Lee & Wang (1988) : 

= 4.676. (7.3b) 

Tsamopoulos & Brown (1987) predict centring during oscillation in the sloshing 
mode, which will eventually lead to a concentric configuration. This difference is 
probably due to a higher-order effect that the weakly nonlinear theory is unable to 
capture. 

Increasing R to 0.8 results in touching of the two surfaces for a lower value of 6, 

namely 0.1. By decreasing 8 to 0.08, this is avoided and integration for more than one 
period of the slow oscillation is carried out. The slow oscillation is shown in figure 16 
and exhibits a period of 21.74. By extrapolating the results for R = 0.7 to the value 
E = 0.08, the slow period is expected to be T, = 16.8, which is significantly smaller 
than the period found for R = 0.8. This is a similar effect to the one observed for the 
bubble mode and it is due to the increase of R for constant initial deformation. 

7.4. Effects of gas compressibility 
When the gas in the bubble is considered to be compressible, its volume and 
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FIQURE 11.  Shapes of a liquid shell oscillating in the sloshing mode for 7 periods of the 2nd mode 
with E = 0.15 and R = 0.7 a t  the times shown on the plots. The nonlinear period of fast oscillation 
for these parameters is roughly 2.8. 

0’25----- 

-0.25 

Time 

FIQURE 12. Surface, kinetic and total energy for a shell oscillating in the sloshing mode with E = 
0.15 and R = 0.7. The surface energy has been translated in such a way as to make the total energy 
zero. Positive values correspond to kinetic energy and negative ones to surface energy. 
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increasing amplitude of the initial distortion mode Pz(0), in the sloshing mode of oscillation. The 
dots correspond to numerical results. 
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Initial Frequency of fast Frequency of slow 
disturbance, B oscillation wz,S oscillation O J ~ , ~  

0 2.285 0.0 
0.1 2.236 0.455 
0.12 2.205 0.560 
0.15 2.167 0.724 

TABLE 2. Effect of amplitude of disturbance on oscillation frequencies in the sloshing mode 
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FIGURE 16. Sloshing mode oscillations of the centres of mass of the bubble (-), the drop 
(---) and the shell (. . . - )  for E = 0.08 and R = 0.8. 

consequently the volume of the drop are allowed to vary in time, provided that the 
volume of the shell remains the same. This will take place irrespective of whether or 
not the volume of the bubble is altered initially, since it is a result of the dynamic 
interaction between pressure and surface tension on the interfaces. 

Volume variations are equivalent to variations of the zeroth Legendre mode which 
was held constant in the incompressible case. In fact, Longuet-Higgins (1989a), in his 
asymptotic study of sound generation from oscillating axisymmetric gas bubbles, 
showed, to second order, that any of the distortion Legendre modes will induce 
pressure radiation that decays only like r-l away from the bubble. If, in addition, the 
frequency of the originally excited mode happens to be half of that of the zeroth 
mode, there will be resonance between the two. Therefore, energy will be transferred 
very effectively to the zeroth mode and its amplitude will increase significantly. 

It should be noted here that the possibility of resonance in drop dynamics had been 
analysed in some detail by Tsamopoulos & Brown (1984). In an earlier work by the 
same authors (Tsamopoulos & Brown 1983), weakly nonlinear oscillations of liquid 
drops and incompressible gas bubbles were considered. This was accomplished by 
following the methodology of Tadjbakhsh & Keller (1960). Clearly, in that case the 
zeroth mode is disallowed, and its frequency is purely imaginary (see also (7.1)). This 
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was also noted by Benjamin (1989), who argued that the monopole component can 
only arise from changes in the bubble’s volume. These are the reasons for the form 
of the second-order solution given by Tsamopoulos & Brown (1983), in contrast to 
the conjecture of Longuet-Higgins ( 1 9 8 9 ~ ) .  When the true initial-value problem was 
considered by Tsamopoulos & Brown (1984), terms of the form ( 4 - 4 4 )  did appear 
in the denominator of the solution and signalled the possibility of resonance between 
higher modes. Consequently, only when the gas in the bubble is considered 
compressible will the interplay of nonlinear terms in Bernoulli’s equation and 
curvature bring about resonance with the zeroth mode (Longuet-Higgins 1989 b) .  

Similarly here, if the gas in the bubble is considered to be compressible, resonance 
of the zeroth mode may be obtained. In particular, if 8 = 0.1, R = 0.7 and the bubble 
mode of oscillation is initially excited, its nonlinear period is approximately 0.88. 
Choosing P,(t = 0) to be 4.1725 in (7.1),  the period of the zeroth mode is calculated 
to  be 0.44. These values will induce resonance between the second and the zeroth 
modes. When the liquid in the shell is water and it is surrounded by air at 
atmospheric pressure, the dimensionless pressure required above corresponds to an 
outer radius of the order of microns. When higher modes are initially excited, the 
outer radius necessary for resonance is larger. 

Figure 17 shows the evolution of the shell with time. These shapes are not much 
different from the ones obtained for an incompressible bubble, except for the 
variation in volume. Figure 18 shows the oscillations of the first seven Legendre 
modes of the shape of the outer surface, along with some high modes. The envelopes 
surrounding the oscillations of the zeroth and second Legendre modes indicate a slow 
exchange of energy between these two modes. A similar envelope is exhibited by the 
fourth mode. By counting the peaks, it  was found that the period of the fourth mode 
is approximately 0.4, which allows for resonance between the fourth mode and either 
the second or the zeroth modes. The other modes behave quite regularly and the 
higher ones are almost non-existent. This behaviour is expected according to the 
analysis of Tsamopoulos & Brown (1984) and Longuet-Higgins (1989a). 

In figure 19 the evolution of energy is presented. The total energy is again 
invariant and, besides the kinetic and surface energy, it includes the energy due to 
volume variations, which is not shown. The oscillations of the centres of mass are 
shown in figure 20. The period of the slow oscillation is found to be 5.3, which is 
somewhat smaller than 5.47 obtained when compressibility effects were excluded. In 
order to examine the reasons for this difference, calculations were carried out for the 
same parameters except that the internal pressure was initially set to 2.0. This value 
does not allow for resonance of the zeroth mode. Figures 21 and 22 show the 
oscillations of the Legendre modes and the centres of mass, respectively. The 
evolution of shapes is given elsewhere (N. Pelekasis 1991). The absence of resonance 
between the zeroth and the second mode is obvious, whereas the coupling between 
the fourth and the second mode is more pronounced in the oscillations of the fourth 
mode, now that there is no competition from the zeroth mode. The amplitudes of the 
oscillations of the zeroth and first mode are smaller when there is no resonance. 
Consequently, the oscillations of the centres of mass exhibit smaller amplitude and 
the period is the same as that obtained for the incompressible case. It can be argued 
that, when there is resonance between the zeroth and the second modes, there is a 
transfer of energy from the initially excited mode to the zeroth one. The zeroth mode 
in turn transfers energy to all the modes and, most importantly and quickly, to the 
first one which oscillates faster, resulting in smaller periods of oscillation of the two 
centres of mass. 
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FIGURE 17. Shapes of a liquid shell surrounding a compressible bubble, oscillating in the bubble 
mode for 6 periods of 2nd mode with E = 0.1 and R = 0.7 at the times shown on the plots. The 
nonlinear period of fast oscillation for these parametric values is roughly 0.88 and it is equal to 
twice the period of the zeroth mode. 

This analysis was repeated for the sloshing mode. It was found that, when 
resonance exists, the two surfaces touch each other before a single period of the 
second mode is completed. Specifically, for R = 0.7 and 6 = 0.1 the two surfaces 
touch at t = 2.55. This is happening because the amplitude of the oscillations 
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increases and at the same time the two surfaces move out of phase. When the initial 
pressure inside the bubble is such that resonance is avoided, results similar to those 
for an incompressible bubble are obtained. This can be seen in figures 23 and 24. The 
period of the slow oscillation around the concentric configuration is 11.38, which 
essentially is the same as that found for the incompressible case. 

7.5. Effect of initial conditions 
In  all cases presented so far, the centres of mass of the bubble and the drop are 
initially displaced in such a way that the centre of mass of the shell is fixed and very 
close to zero. Alternatively, the bubble alone may be initially displaced, thus setting 
the centre of mass of the shell further away from the zero value along the axis of 
symmetry. I n  this way, the magnitude of the shape oscillations is disassociated from 
the initial displacement of the centres of mass. 

Such an initial disturbance is given by (2.11 a)  and (2.1 1 b)  with A being a measure 
of the initial displacement of the centre of mass of the bubble. The effect of A on the 
motion is tested by running cases with B = 0.1 and R = 0.7 with the shell oscillating 
in the bubble mode for two different values of A ,  namely 0.05 and 0.07. Evolution of 
shapes and the invariants of the motion are given elsewhere (N. Pelekasis 1991). The 
periods of the fast and slow oscillations for both cases are the same as those when the 
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ting in the bubble mode with E = 0.1 and R = 0.7 with Pz and Po in resonance. 
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FIQURE 19. Surface, kinetic and total energy for a shell oscillating in the bubble mode ( E  = 0.1 and 
R = 0.7) with Pz and Po in resonance. Both surface and total energy are translated independently 
since volume energy also contributes. Positive values correspond to kinetic energy and negative 
ones to surface energy. 
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FIQURE 21. Amplitudes of modes &6 and 20 of the shape of the outer surface for a shell oscilla- 
ting in the bubble mode with e = 0.1, R = 0.7 and away from resonance conditions. 
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FIGURE 22. Bubble mode oscillations of the centres of mass of the bubble (-), the drop (---) 

and the shell (. . . .) for e = 0.1, R = 0.7 and away from resonance conditions. 
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FIGURE 23. Surface, kinetic and total energy for a shell oscillating in the sloshing mode with E = 
0.1, R = 0.7 and away from resonance conditions. Both surface and total energy are translated 
independently since volume energy also contributes. Positive values correspond to kinetic energy 
and negative ones to surface energy. 
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FIGURE 24. Sloshing mode oscillations of the centres of mass of the bubble (-), the drop 
(---) and the shell ( .  . . . ) for E = 0.1, R = 0.7 and away from resonance conditions. 

centre of mass of the shell is set to zero. The same effect has been observed by Lee 
& Wang (1988) in the thin shell limit. Of course as d increases further, the north pole 
of the bubble approaches the corresponding one of the drop and the two surfaces 
touch each other sooner. 
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The third type of initial condition tested is given by (2.12). In this case, both 
interfaces are spherical and the shell is neutrally stable. However, a step change in 
the outer pressure induces volume oscillations in the bubble. For the purpose of the 
present calculations, R = 0.7, PI = 2 ,  d = 0.1 and the outer pressure was increased by 
either 40 % or 120 YO from its original static value. Figures 25 and 26 show the slow 
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Percentage change in 
outer pressure from Frequency of fast Frequency of slow 

static value oscillation w,,, oscillation us, 

0 9.50 0 
40 10.33 0.257 

I20 11.55 0.757 

TABLE 3. Effect of pressure di&turbance on oscillation frequency of the shell 

oscillation of the centres of mass of the bubble, the drop and the shell. It can be seen 
that the fast oscillation is again present and i t  corresponds to the zeroth mode. 
However, its amplitude is much smaller since no surface deformation modes were 
initially present, but arose through nonlinear coupling. For the same reason, 
calculations are not constrained by the appearance of numerical instabilities. Table 
3 demonstrates that increasing the initial disturbance results in smaller frequency of 
the slow oscillation in accordance with the earlier cases, Finally, it is quite important 
to mention that the frequency of the fast oscillation which here corresponds to the 
zeroth mode increases slightly with amplitude, in contrast to all other modes (Pn, 
n 2 2) which decrease with the square of the amplitude. The reason for this is that Po 
does not couple with any other mode through nonlinear terms. 

8. Concluding remarks 
The hybrid finite element-boundary element formulation developed here resulted 

in an accurate and efficient simulation of the shell oscillations with time. Significant 
nonlinear effects were captured, such as mode coupling, mode resonance and most 
importantly the centring mechanism has been explained definitively. For a given 
ratio of the inner to  outer radii, there is an upper limit for the amplitude of the initial 
disturbance, beyond which either the two surfaces touch each other or the growth of 
higher modes appears. 

Refinement of the spatial and temporal resolution was the only means of 
smoothing employed. This provided accurate results without introducing numerical 
damping or resorting to  excessively large system matrices and prohibitive 
computation times. For more severe initial disturbances, high modes grow too fast 
for the time and space discretization to capture them. When the two surfaces tend 
to touch each other, refinement does not help since then the entire problem 
formulation must be changed in order to account for multivalued surfaces and new 
physical forces. 

The results obtained indicate that, although nonlinear effects cause the oscillatory 
motion of the centres of mass around the concentric configuration, they do not suffice 
for the complete explanation of the experimental observations. To this end, viscous 
effects must be included in order to damp out the slow motion. This oscillatory 
motion becomes faster for larger distortions and for an intermediate value of the 
ratio of radii, indicating that i t  is indeed a nonlinear effect. As expected, the 
frequency of the individual modes decreases with the square of the amplitude. Both 
the bubble and the sloshing mode conform to the above observations. Compressibility 
of the gas in the bubble does not change the overall picture. It does give rise, 
however, to  interesting resonance phenomena that may further accelerate the 
centring mechanism. 
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